

Michael J Coss
Oct 15, 2014

DYNAMIC DEVICE MANAGEMENT FOR LXC

2

To provide a virtual desktop environment that

•Has performance as close as possible to the non-
virtualized environment

•Lets the user dynamically add and remove I/O
devices to/from the virtual desktop
­ Keyboard and mouse

­ Display

­ Audio (speaker, microphone)

•Supports 3d hardware-accelerated graphics

OUR ORIGINAL GOAL

3

•Device management is currently done via a
combination of devtmpfs, sysfs and udevd
­ Not namespace aware

­ Not container aware

•Most LXC documentation said not to run udevd in
containers at all

•Many users simply mount devtmpfs in the container
­ Works but exposes all devices to the container

DYNAMIC DEVICE MANAGEMENT

Kernel

Driver­core
­
netlin
k
uevent­listener(s)

udevd

sysfs­/sys
Kernel­objects­

represented­as­files­and­
directory­structures

devtmpfs­/dev
Device­nodes­managed­

on­host­

Kernel­filesystems

Udev­event­process

Match­events­against­rules
Store­information­in­database
Take­actions:­create­links,­change­
permissions,­etc.

Manage in
memory

 udev
database

libudev­
apps Udevd connects to the netlink kernel socket and provides,

via libudev, access to the pre- and post-processed uevent
stream.

uevents sent to all listeners
across all namespaces

Existing­hotplug­event­path

5

•Assuming you can even get udev to run in a
container, the process listens on a kernel socket and
all events are passed to it

•Mounting devtmpfs inside a container grants the
container access to *all* devices
­ Can use device controls in lxc.conf to restrict access

­ ideally would like to have only a subset of devices exposed to the container

•Where and how do you apply policy?
­ Who gets what kernel events?

­ Who owns the device?

DYNAMIC DEVICE MANAGER ISSUES

6

•The kernel currently broadcasts uevents to any
process listening on the kernel socket.
­ Pass uevents only to processes in the server’s network namespace.
­ Containers run in a separate network namespace to facilitate isolation
­ A new kernel function is needed to take a uevent targeted for a

specific container and route to any listeners in that container’s
namespace.

•User space daemon (udevns)
­ Policy-control daemon listens for uevents of interest

­ Checks an in-memory database for device information

­ Manages device nodes in container’s /dev directory and passes uevent
to kernel socket in container’s namespace

OUR CHANGES

Kernel

Driver­core
­
netlin
kuevent­listener(s)

udevd

sysfs­/sys
Kernel­objects­

represented­as­files­and­
directory­structures

devtmpfs­/dev
Device­nodes­managed­

on­host­

Kernel­filesystems

udev­event­process

Match­events­against­rules
Store­information­in­database
Take­actions:­create­links,­change­
permissions,­etc.

Manage in
memory

 udev
database

udevns udevns reads the raw uevent stream from the kernel,
and sends a reconstituted kernel uevent back to the
appropriate container namespace

uevents sent to listeners in
host network name spaces

Modified­hotplug­event­path

udevns

8

User plugs in a USB keyboard…

•A directed graph of directories, and files as
specified by the device driver is generated in /sys
for the various kobjects
­ Total of 186 entries generated for a keyboard hotplugged
on my system

• As devices are added, uevent messages are
generated and sent to processes listening on the
netlink socket, in the host network namespace
­ Total of 6 events generated for the keyboard insertion

SO HOW DOES IT WORK (KERNEL PERSPECTIVE)

9

•udevd listens on the netlink socket in the host
network namespace

• Processed as normal, actions taken as specified by rules

•udevns listens to the same uevent message stream
that udevd sees

•udevns determines which container is interested in
the given event

SO HOW DOES IT WORK (USERSPACE PERSPECTIVE)

10

•udevns determines what devices are needed
• Creates or removes the nodes in the container’s
local /dev directory

•udevns constructs a uevent message
• Sent via a simple pseudo device driver and forwarded to
the container’s udevd via the netlink socket

• Any other container processes listening on the netlink
socket will receive a copy of the uevent

SO HOW DOES IT WORK (USERSPACE PERSPECTIVE) CONT.

11

•udevns is just one example of policy mechanism to
manage uevents

•Two key kernel infrastructure mechanisms were
needed

• Stop the broadcast of uevents to all namespaces

• Facilitate selectively sending uevents to a specific
 container

•While this addresses devtmpfs by eliminating its use
in the container, sysfs is still an issue

CONCLUSIONS

	Dynamic Device Management for LXC
	Our original goal
	Dynamic device management
	Slide 4
	Dynamic Device Manager issues
	Our changes
	Slide 7
	So how does it work (Kernel Perspective)
	So how does it work (USERSPACE Perspective)
	So how does it work (USERSPACE Perspective) cont.
	Conclusions

